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Abstract

The effectof acoustic coupling on random and harmonic plate vibrations isstud-

ied using two numerical models. In the coupled model, the plate response is obtained by

integrationof the nonlinear plate equation coupled with the nonlinear Euler equations for

the surrounding acoustic fluid.In the uncoupled model, the nonlinear plate equation with

an equivalent linearviscous damping term isintegrated to obtain the response of the plate

subject to the same excitationfield.For a low-level,narrow-band excitation,the two models

predict the same plate response spectra. As the excitationlevelisincreased, the response

power spectrum predicted by the uncoupled model becomes broader and more shiftedto-

wards the high frequencies than that obtained by the coupled model. In addition, the

differencein response between the coupled and uncoupled models at high frequenciesbe-

comes larger.When a high intensityharmonic excitationisused, causing a nonlinear plate

response, both models predict the same frequency content of the response. However, the

levelof the harmonics and subharmonics are higher for the uncoupled model. Comparisons

to earlierexperimental and numerical resultsshow that acoustic coupling has a significant

effecton the plate response at high excitationlevels,Its absence in previous models may

explain the discrepancy between predicted and measured responses.



1. Introduction

It is well known in structural dynamics that linear plate theory cannot be used

to accurately predict structural responses at high excitation levels. In an attempt to over-

come this weakness, several nonlinear plate models have been proposed. The nonlinearities

introduced in the various models can be classified in two categories: geometric nonlinearity

or material nonlinearity. The nonlinear model based on the geometric nonlinearity, also

referred to as the large deflection model, has been extensively used in the literature. 1-10

Although this model gives better predictions than those of the linear theory, it overestimates

the frequency content or "broadening" of the response spectrum at high excitation levels.

To further improve the predictions of the nonlinear analysis, several damping mod-

els have been studied. Linear, nonlinear, and viscous damping are among the models

used. 11-15 Prasad and Mei 16'17 used nonlinear damping in their large deflection model.

A set of modal equations of the Du_ng form coupled in the nonlinear stiffness and uncou-

pled in the nonlinear damping was derived. An approximate solution was obtained for rms

quantities (such as displacement and strain) and spectral density functions by the equivalent

linearlzation method. The nonlinear damping was found to contribute to the broadening

of the power spectra at high excitation levels. However, Moyer 18 and Reinhall and Miles 19

showed that the method of equivalent linearizatlon gives inaccurate response spectra for

large deflections. The broadening of the response spectrum at high excitation levels was

found to be caused by the nonlinear stiffness. 19 Robinson and Mei 20 studied the influence of

nonlinear damping on panels random response using a time domain simulation. They found

that the nonlinear damping was responsible for a narrowing of the nonlinear response power

spectrum.

Recently, Robinson etal. 21 used a finite element method to integrate the nonlin-

ear plate equations with an equivalent linear viscous damping term to study the linear and

nonlinear response of a plate subjected to a narrow band random excitation. Their results

were in good agreement with experiments for low excitation levels. However, for high excita-

tion levels, the model overpredicted the broadening of the response spectrum and predicted

higher response levels at high frequencies.

In most structural dynamics analyses, there is little discussion about the effect

of the surrounding acoustic fluid on the response of a structure to a given excitation field.

Frendi, etal. 22,23 showed that a strong coupling between plate vibration and the surrounding

flow fields exists at high excitation levels.

In this paper, an attempt is made to explain the discrepancies between the experi-

mental and numerical results obtained by Robinson, e_aI. 21 Using the model developed by

Frendi, e_al. 23 and changing the configuration of the computational domain to match that

of the experiments, the response of a flexible plate to both a narrow band random excitation

and a harmonic excitation is studied using two models. One model accounts for the full

nonlinear coupling to the surrounding fluid. The other replaces the nonlinear coupling by

2



an equivalent linear viscousdamping on the plate.

The remainder of the paper is organized as follows. In section 2, a detailed descrip-

tion of the analytical model is given. Section 3 describes the numerical techniques, and the

results are discussed in section 4. Finally, the conclusions are given in section 5.

2. Formulation of the model

As shown on fig. 1, the computational domain is composed of three regions. The

acoustic fluid in the cavity region (or Top domain) is separated from that in the open space

region (or Bottom domain) by a flexible plate clamped between two rigid plates. Acoustic

disturbances are introduced at the left boundary of the Top domain and propagate over

the rigid and flexible surfaces. There is no meanflow on either side of the flexible plate.

The governing equations in the acoustic fluid regions are the two-dimensional, compressible,

nonlinear Euler equations. In a cartesian coordinate system, m and y, these equations can

be written in conservation form as

aQ aF ac
_T : _ + a-_" (_)

where Q isthe vector (p, pu, pv, e)T, # isthe density,pu and p_ are the m and y momenta

respectively,and e isthe totalenergy per unit volume given by

1 2
e -- _p(u -l- v 2) -f- pc...uT. (_)

In eq. (1),the functions F and G are:

and

I pv
G = puv

pv2 +p

\v(e+ p)

In addition to Eq. (i),an idea]gas state equation isused

(3)

p = pitT, (4)

where p is the pressure, p the density, R the gas constant, and T the temperature.

The equation describing the motion of the one-dimensionai flexible surface is

D O4W _ 82w .82w cgw
o=----_- _v"b-_ + Pp_-_- + (r, + ra)_- = z_p, (s)



where w is the plate transverse deflection, pp the mass per unit volume of the plate, and h

the plate thickness. The total viscous damping is the sum of the structural damping, I's, and

the acoustic damping, I'd. When the plate vibration is coupled to the surrounding acoustic

fluid, I'd = 0. In eq. (5), D = Eh3/12(1 - v 2) is the stiffness of the plate, with E being the

modulus of elasticity and v the Poisson ratio of the plate material. The coefficient Nz in eq.

(5) is given by =

Eh 2
Nz = -_ .,co \ Oz ,] dz, (6)

which represents the tension created by stretching of the plate due to bending. In eq. (6) x0

is the origin of the flexible plate and L its length. The forcing term on the right-hand-side

of eq. (5) is

 p=p- -p+, (7)

where p+ and p- are the pressures on the surfaces above and below the plate, respectively.

When acoustic coupling is neglected, the plate response is obtained by neglecting p- in eq.

(5) and using the same p+ at the plate center as that obtained by integration of the Euler

equations. This is done in order to reproduce the results obtained by Robinson, etal. 21

Equations (1)-(7) are written in a nondimensional form using the following reference

quantities for the different variables:

(z,y,w)ref = Ire/, tee/= Irce-_,

Ow

p,.ef= poo, (u,,.,, = coo,

and

and i = pooch. (8)

The notation (., ")ref is used to represent the reference quantity of the variables in parenthe-

ses. The various freestream fluid properties are those of air at sea level conditions which are:

temperature Too = 519 °R, density poo = 1.147x10 -7 lb sec2/in 4, pressure poo = 14.7 psi and

sound speed coo = 13392 in/sec. The specific heat at constant volume is cv = 6.1776x105

in2/(sec 2 °R), the ratio of specific heats is -y = cp/cv = 1.4, and the reference length is

lre f = 12.0 in.

3. Method of solution

The unsteady Euler equations (eq. (1)) are solved using an explicit finite difference

scheme. The scheme, which is a generalization of MacCormack's scheme obtained by Gottlieb

and Turkel, 24 is fourth order accurate in space and second order accurate in time. The

numerical scheme, applied to a one-dimensional equation of the form

Ou OF
_ (9)

Or. Oz '

consists of a predictor step given by

u i = u i + (-7Fi + 8Fi+l - Fi+2), (10)



followed by a corrector step of the form

u_+l l[u n At.. ]= _ _ + ui + 6--_m(7F_ - 8F_ I + F_-2) • (11)

In the above equations, the subscript i denotes the spatial grid point and the superscript n the

time level. The fourth-order accuracy is obtained by alternating the scheme given above with

its symmetric variant. 24 Operator splitting is used to reduce the two-dimensional problem

to a sequence of one-dimensionai problems. If Lz and Ly denote the solution operators for

the one-dimensional x and y problems, then the solution to eq. (1) is obtained by

Q.+2 = LzLyL_LzQn. (12)

Further details regarding the method and the advantage of fourth order schemes can be

found in Bayliss, et-l. 25

The boundary conditions employed on the rigid and flexible surfaces for the Euler

equations are

v = 0 and T = Tw (13)

over the rigid surfaces, and

v = -- and T = Tw (14)
0t

over the flexible surface. In eqs. (13) and (14) Tw is a specified wall temperature; in this

paper it is taken to be the free-stream temperature, Too. The x-component of the velocity

(u) is obtained through linear extrapolation from the interior over both the rigid and flexible

surfaces.

The pressure boundary conditions are as follows:over the rigidsurfaces where the

time rate of change of the normal momentum is zero, the pressure is calculated using the

normal momentum equation by simply imposing the normal gradient of the sum of pressure

and vertical momentum flux to be zero (_O_(p + pv2) = 0). Over the flexible part of the

surface, a linear extrapolation from the interior is used. At the left boundary of the Top

domain, a nondimensional perturbation velocity is specified fi as

= or = (15)

where R(t) represents a narrow-band random excitation and fi is a nondimensional pertur-

bation velocity. In eq. (15), e is the peak amplitude of the disturbance for the harmonic case

(with w being the frequency), and an rms amplitude in the random case. Using the routine

R.NNOF of the IMSL library 26, Gaussian random data is generated; then, using a quadratic

narrow-band filter, the data is filtered to give the desired input. The pressure and vertical

velocity (v) are obtained by linear interpolation from the interior, and the temperature is

imposed to be constant (T = Tw). The remaining non-physical boundary conditions (Top



domain right boundary, Bottom domain right, left, and bottom boundaries) are derived using

the method of characteristics. 27

The plate equation is integrated using an implicit finite difference method for struc-

tural dynamics developed by Hoff and Pahl. 28 The calculation of N_ was done using Simp-

son's rule of integration. The boundary conditions used to solve the plate equation are those

for a clamped plate
Ow

zo = O"_" = 0 at x = x0, _0 + L. (21)

The coupling between the acoustic fluid and the flexible plate is performed as

follows. The method used in the fluid is explicit. Thus the pressure fields in the Top

and Bottom domains are updated by using the value of _ at the previous time-step as

a boundary condition for the Euler equations. Then, using the new values of p+ and p-,

the plate equation is integrated to obtain the new vertical velocity -_r. This procedure is

repeated at every time-step.

For every coupled calculation, the time history of the pressure at the center of the

flexible plate in the Top domain is stored in order to be used as input for the equivalent

uncoupled case. This was done in order to match the numerical procedure used by Robinson,

etal. 21

4. Results and Discussion

The results presented in this paper are obtained for a flexible plate having the

following properties: stiffness D = 1095.6 lbf • in, mass per unit area pph = 2.21x10 -5 lbf

• sec2/in 3, and a Poisson ratio v = 0.3. Two values of total viscous damping (Fs q- Fa)

are used; 2.5x10 -5 !bf • sec/in 3 used in the fully coupled calculation (where Fa = 0) and

5x10 -4 Ibf- sec/in 3 used in the uncoupled calculation. These two values are chosen such that

the two calculations predict the same response for low-intensity excitations (linear vibration

regime). The plate is 15 in long, 11 in wide, and 0.13 in thick. The first natural frequency

of the plate is 112 Hz. The Top domain of Fig. 1 is 12 in high in the y-direction and 120

in long in the x-direction, and the number of computational points used are 101 and 181 in

both directions, respectively. The Bottom domain is 120 in long in both directions with 161

points used in each direction•

The power spectra shown here are for the center plate displacement response and

the pressure on either side of the plate center. Also typical instantaneous pressure distribu-

tions are shown for both the Top and Bottom domains.

• Previous Experimental and Numerical Results

At first the results obtained in Ref. 21 are summarized. Figure 2 shows the power

spectral density of the strain obtained both experimentally and numerically for a narrow-

band excitation sound pressure level of 140 dB. The figure shows that the power spectrum

obtained from the simulation is in good agreement with that given by the experiment near

the fundamental frequency (112 Hz) where the measured strains are within the sensitive

range of the strain gages. Away from the fundamental frequency, the measured strains are



small compared to the sensitivity, which is approximately 1.0 #-strain squared per Hz, and

therefore not very accurate. As the sound pressure level is increased to 160 dB, figure 3, the

simulation overpredicts the broadening of the spectrum and the response at high frequencies.

It is important to restate that an equivalent linear viscous damping was used in the plate

model, and that the nonlinear coupling to the surrounding acoustic fluid was neglected.

• Current Model: (1) Random Excitation

In order to obtain a pressure input spectrum similar to that of the experiments

described above, the random data generated by the IMSL routine RNNOF is filtered using

a quadratic narrow-band filter of bandwidth 50 to 500 Hz. Figure 4 shows that both the

fully coupled and uncoupled models predict the same displacement frequency response of

the plate for a low-intensity noise having a maximum sound pressure level of 120 dB. The

spectrum obtained by the uncoupled model shows a more pronounced peak at 560 Hz, which

corresponds to a natural frequency of the plate. The plate response is linear and is dominated

by the first mode. Due to the high cost in CPU time of the coupled calculations, the time

histories of the various quantities were not long enough to give smoother power spectra.

Increasing the noise intensity to a maximum sound pressure level of 140 dB leads

to a nonlinear plate response. The frequency content of the response shifts toward higher

frequencies and the spectrum broadens, as shown by fig. 5. However, the shift and the

broadening are different for the two models. The power spectrum predicted by the uncoupled

model shows a greater shift toward high frequencies and more broadening than that predicted

by the coupled model. The plate response at high frequencies is also higher when the

uncoupled model is used. The difference between the coupled and uncoupled power spectra

is similar to that observed earlier between experiments and simulation (see fig. 3). This

result indicates that acoustic coupling at high sound pressure levels is important for the

accurate prediction of the plate response.

Figure 6 shows the power spectra of the pressure on both sides of the plate center.

Notice that the pressure on the top surface is dominated by the input pressure while the

pressure on the bottom surface is due to the vibration of the plate and has, therefore, a power

spectrum similar to that of the response. An instantaneous pressure distribution in the Top

domain is shown in fig. 7. Since the input is random, severaJ peaks are observed in the pres-

sure field superimposed on a strong low frequency. The instantaneous pressure distribution

in the Bottom domain shows the presence of one dominant frequency corresponding to that

of the plate response, fig. 8.

• Current Model: (2) Harmonic Excitation

For an excitation frequency f = 112 Hz (corresponding to the first mode of the

plate) and an amplitude of 150 dB, the plate response is nonlinear, as shown by fig. 9. The

power spectra of the center plate displacement show severai harmonics and subharmonics

characteristic of the nonlinear response. For this excitation level, both the fully coupled and

uncoupled models predict the same response power spectrum (similar results are obtained

for lower dB levels). This result is attributed to the weak nonlinearity in the radiation field.

Figure 10 shows the power spectra of the pressure on both sides of the plate center. The

7



power spectrum of the pressure on the top surface shows a strong peak at the fundamental

frequency (112 Hz) and negligible harmonic content, indicative of weak nonlinearity. The

power spectrum of the radiated pressure on the bottom surface more closely resembles to the

response power spectrum with slightly stronger harmonics as should be expected, since the

coupling between the plate vibration and the acoustic fluid is obtained through the vertical

velocity. Due to transmission loss, the level of the radiated pressure on the bottom surface

is 20 dB lower than that of the top surface. The weak nonlinearity in the pressure field

is further evidenced by fig. 11; where the Top domain power spectra of the pressures at

the inflow and near the center of the flexible plate are shown. The two spectra are nearly

identical except for a negligible difference in the levels of the harmonics indicating a weak

nonlinearity in addition to the contribution of the flexible plate.

Increasing the level of the excitation source to 165 dB leads to a stronger contri-

bution of the harmonics to the plate response and much less contribution from the sub-

harmonics, fig. 12. This result is in agreement with earlier work 23 which showed that the

window to complex dynamics is very narrow and that an increase in excitation level can

lead to a more stable system. The two models do not predict the same displacement power

spectrum of the plate. At high frequencies, the uncoupled model predicts a higher level of

the response peaks. This is similar to the random excitation case, except that the peaks are

not shifted. Figure 13 shows that the pressure fields on both sides of the plate are nonlinear.

Both pressure power spectra show a strong harmonic content. The nonlinearity in the Top

domain pressure field is shown in fig. 14. The levels of the harmonics on the flexible plate

are higher due to both the plate vibrations and the nonlinear wave propagation. The latter

point can be seen on the figure through the change in magnitude of the peak at 560 Hz

and its harmonic 1120 Hz. On the flexible plate, the 560 Hz peak (which corresponds to a

plate mode) is higher than its harmonic (1120 Hz). However, at the infow the two peaks

are nearly the same. This indicates that while the 560 Hz peak has decayed significantly its

harmonic has decayed only slightly. This is a characteristic of nonlinear wave propagation.

Similar results are obtained for the Bottom domain pressure field.

5. Conclusions

Based on the results obtained in this paper, the following conclusions can be made:

(1) The coupling between the acoustic fluid with no meanflow and the plate vibra-

tion is not important at low excitation levels for both random and harmonic excitations, as

was reported by Frendi, etal. 23

(2) The acoustic coupling is important for accurate prediction of the plate response

at high excitation levels. The present results show that the absence of acoustic coupling in

earlier models may be the reason for the discrepancy between numerical and experimental

results. When acoustic coupling is accounted for, less spectral broadening and frequency

shift is obtained. The plate response is lower at higher frequencies, which is in agreement

with experimental observations. 21

(3) In the harmonic case, no shift in the peaks of the response is obtained; however,



the uncoupled model predicts higher levels of the higher harmonics. The results also show

that the coupling between the acoustic fluid and the plate vibration is important only when

both the structural response a_d the acoustic radiation are nonlinear, which is in agreement

with previous results. 23
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obtained by the coupled and uncoupled models for harmonic excitation

with a frequency of 112 Hz and a peak amplitude of 150 dB.
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Fig. 10: Power spectra of the surface pressure on both sides of the plate

center.
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Fig. 11: Power spectra of the Top domain pressures at the inflow and

near the center of the flexible plate.
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Fig. 12: Comparison of the power spectra of the center plate displace-

ment obtained by the coupled and uncoupled models for harmonic exci-

tation with a frequency of 112 Hz and a peak amplitude of 165 dB.
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